如图,在平行四边形ABCD,对角线AC与BD交于点O,E、F、G、是AO,BO,CD中点,AC=2AD,求证CF垂直BD,三角形EFG是等腰三角形

问题描述:

如图,在平行四边形ABCD,对角线AC与BD交于点O,E、F、G、是AO,BO,CD中点,AC=2AD,求证CF垂直BD,三角形EFG是等腰三角形

E、F分别是AO,BO中点,所以,EF=1/2AB
在直角三角形CFD中,G为CD中点,所以FG=1/2CD
ABCD为平行四边形,所以AB=CD
所以EF=FG
所以是等腰三角形

证明:1:AC=2AD=2BC=2OC即BC=OC又F为OB中点所以CF垂直于OB即
CF垂直于BD.
2; EF=1/2AB [三角形中位线] GF=1/2CD[直角三角形斜边中线]所
以EF=GF即三角形EFG为等腰三角形.