行列式的性质证明一个性质不会证,A为n阶矩阵,把A的第j行的倍加到第i行上得到A'则detA'=detA .请问这怎么证啊
问题描述:
行列式的性质证明
一个性质不会证,A为n阶矩阵,把A的第j行的倍加到第i行上得到A'则detA'=detA .请问这怎么证啊
答
需要用到几个性质先1,将行列式A的某一行或某一列乘以常数c则得到的行列式B=cA.2,设A,B,C为3个n阶行列式,它们的第i行第j列元素记为Aij,Bij,Cij,若A,B,C的第r行元素满足Crj=Arj+Brj,而其他元素相同,则C=A+B3.若行列式2...