第三宇宙速度怎么求?
问题描述:
第三宇宙速度怎么求?
第三宇宙速度——逃逸速度.
答
G*M*m/r^2 = m*(v^2)/r G引力常数,M被环绕天体质量,m环绕物体质量,r环绕半径,v速度.
得出v^2 = G*M/r,月球半径约1738公里,是地球的3/11.质量约7350亿亿吨,相当于地球质量的1/81.
月球的第一宇宙速度约是1.68km/s.
再根据:V^2=GM(2/r-1/a) a是人造天体运动轨道的半长径.a→∞,得第二宇宙速度V2=2.38km/s.
一般:第二宇宙速度V2等于第一宇宙速度V1乘以√2(其中,本句数字前的符号为根号).
第三宇宙速度V3较难: 我以地球打比方吧,绕太阳运动的平均线速度为29.8km/s.在地球轨道上,要使人造天体脱离太阳引力场的逃逸速度为42.1km/s.当它与地球的运动方向一致的时候,能够充分利用地球的运动速度,在这种情况下,人造天体在脱离地球引力场后本身所需要的速度仅为两者之差V0=12.3km/s.设在地球表面发射速度为V3,分别列出两个活力公式并且联立: V3^2-V0^2=GM(2/r-2/d) 其中d是地球引力的作用范围半径,由于d远大于r,因此和2/r这一项比起来的话可以忽略2/d这一项,由此就可以计算出: V3=16.7km/s,也就是第三宇宙速度.