化简(ab+a+1)分之a+(bc+b+1)分之b+(ca+c+1)分之c,其中abc=1.要有计算过程.这是化简求值

问题描述:

化简(ab+a+1)分之a+(bc+b+1)分之b+(ca+c+1)分之c,其中abc=1.要有计算过程.
这是化简求值

由于abc=1,所以
ab+a+1=ab+a+abc=a(b+1+bc)
ca+c+1=ca+c+abc=c(a+1+ab)=ca(b+1+bc)
所以
a/(ab+a+1)+b/(bc+b+1)+c/(ca+c+1)
=a/a(b+1+bc)+b/(bc+b+1)+c/ca(b+1+bc)
=1/(bc+b+1)+b/(bc+b+1)+1/a(bc+b+1)
=(1+b+1/a)/(bc+b+1)
=(1+b+bc)/(bc+b+1)
=1

abc=1
所以(ab+a+1)分之a+(bc+b+1)分之b+(ca+c+1)分之c=
(ab+a+abc)分之a+(bc+b+abc)分之b+(ca+c+abc)分之c
=(ab+a+1)分之1+(bc+b+1)分之1+(ca+c+1)分之1

因为abc=1.,
所以a/(ab+a+1)+b/(bc+b+1)+c/(ca+c+1)
=a/(ab+a+abc)+b/(bc+b+1)+c/(ac+c+abc)
=1/(b+1+bc)+b/(bc+b+1)+1/(a+1+ab)
=1/(b+1+bc)+b/(bc+b+1)+abc/(a+abc+ab)
=1/(b+1+bc)+b/(bc+b+1)+bc/(1+bc+b)
=(1+b+bc)/(b+1+bc)
=1.

因为abc=1
所以:a/(ab+a+1)=a/(ab+a+abc)=1/(b+1+bc)
所以: a/(ab+a+1)=1/b *b/(bc+b+1)
又因为:c/(ca+c+1)=c/(ca+c+abc)
=1/(a+1+ab)
=1/a* a/(ab+a+1)
=1/a* 1/b *b/(bc+b+1)
=1/ab* b/(bc+b+1)
所以:a/(ab+a+1) +b/(bc+b+1) +c/(ca+c+1)
=1/b *b/(bc+b+1)+b/(bc+b+1)+1/ab* b/(bc+b+1)
=(a+ab+abc)/(a+ab+abc)
=1