答
(1)∵∠ACB=90°,CF⊥CE,
∴∠ECB=∠ACF.
又AC=BC,CE=CF,
∴△ECB≌△FCA.
∴BE=AF,∠CBE=∠CAF,
又∠CBE+∠CAB=90°,
∴∠CAF+∠CAB=90°,
即BE=AF,BE⊥AF.
(2)证明:作GM⊥AB于M,GN⊥AF于N,
∵△ACF可由△BCE绕点C顺时针方向旋转90°而得到,
∴AF=BE,∠CAF=∠CBE=45°.
∴AE=2AF,∠CAF=∠CAB,
∴GM=GN.
∴S△AEG=2S△AFG,
∴EG=2GF,
∴=2.
(3)由(2),得
当=n时,S△AEG=nS△AFG,
则= ,
∴当n=时,=.
答案解析:(1)在Rt△ABC中,AC=BC,∠ACB=90°,CF⊥CE,可推出∠ECB=∠ACF,且CE=CF,由此可得△ECB≌△FCA,即得BE=AF,∠CBE=∠CAF,且∠CBE+∠CAB=90°,故∠CAF+∠CAB=90°,即BE⊥AF;
(2)作GM⊥AB于M,GN⊥AF于N,可得出GM=GN,从而有S△AEG=2S△AFG,即证=2;
(3)根据(2)的推理过程,知S△AEG=nS△AFG,则= ,即可求得n的值.
考试点:旋转的性质;全等三角形的判定与性质.
知识点:此题综合运用了全等三角形的判定和性质、旋转的性质,能够从特殊推广到一般发现规律.