求积分∫ x的平方除以根号下1-x的平方 dx答案好像是1/6arctan(3/2x)+C?
问题描述:
求积分∫ x的平方除以根号下1-x的平方 dx
答案好像是1/6arctan(3/2x)+C?
答
设x=sint,dx=costdt,(以下省略积分符号)
原式=[(sint)^2/cost]costdt
=(sint)^2dt
=(1-cos2t)/2*dt
=1/2[dt-cos2tdt)
=1/2t-1/4sin2t+C
sin2t=2sintcost=2x*根号(1-x^2)
所以原式=1/2arcsinx-1/2x根号(1-x^2)+C