已知m²=n+2,n²=m+2,﹙m≠n﹚,求﹙1﹚m+n的值﹙2﹚m³-2mn+n³的值.请详解,
问题描述:
已知m²=n+2,n²=m+2,﹙m≠n﹚,求﹙1﹚m+n的值﹙2﹚m³-2mn+n³的值.请详解,
答
(1)m²=n+2(A),n²=m+2(B)
(A)-(B)得(m+n)(m-n)=n-m
因为m≠n
所以m+n=-1
(2)注意观察
m²=n+2两边同时乘以m
即m³=nm+2m(a)
n²=m+2两边同时乘以n
即n³=mn+2n(b)
(a)+(b)得
m³-2mn+n³=2(m+n)=-2
答
m²-n²=n-m
﹙m-n﹚﹙m=n﹚+﹙m-n﹚=0
﹙m-n﹚﹙m+n+1﹚=0
∵m≠n
∴m+n=﹣1
答
m²=n+2,n²=m+2,﹙m≠n﹚,相减,得m²-n²=n-m[m-n][m+n]=n-mm+n=-1相乘,得m²n²=mn+2【m+n】+4【mn】²-mn-2=0【mn+1】【mn-2】=0mn=-1或mn=2【舍去】2.m²=n+2,n²=m+...