如图,▱ABCD的顶点A,B的坐标分别是A(-1,0),B(0,-2),顶点C,D在双曲线y=kx上,边AD交y轴于点E,且四边形BCDE的面积是△ABE面积的5倍,则k的值等于(  )A. 12B. 10C. 8D. 6

问题描述:

如图,▱ABCD的顶点A,B的坐标分别是A(-1,0),B(0,-2),顶点C,D在双曲线y=

k
x
上,边AD交y轴于点E,且四边形BCDE的面积是△ABE面积的5倍,则k的值等于(  )
A. 12
B. 10
C. 8
D. 6

如图,过C、D两点作x轴的垂线,垂足为F、G,DG交BC于M点,过C点作CH⊥DG,垂足为H,∵ABCD是平行四边形,∴∠ABC=∠ADC,AB=CD,∵BO∥DG,∴∠OBC=∠GDE,∴∠HDC=∠ABO,∴△CDH≌△ABO(ASA),∴CH=AO=1,DH=OB=...
答案解析:分别过C、D作x轴的垂线,垂足为F、G,过C点作CH⊥DG,垂足为H,根据CD∥AB,CD=AB可证△CDH≌△ABO,则CH=AO=1,DH=OB=2,由此设C(m+1,n),D(m,n+2),C、D两点在双曲线y=

k
x
上,则(m+1)n=m(n+2),解得n=2m,设直线AD解析式为y=ax+b,将A、D两点坐标代入求解析式,确定E点坐标,求S△ABE,根据S四边形BCDE=5S△ABE,列方程求m、n的值,根据k=(m+1)n求解.
考试点:反比例函数综合题.

知识点:本题考查了反比例函数的综合运用,解答此题的关键是通过作辅助线,将图形分割,寻找全等三角形,利用边的关系设双曲线上点的坐标,根据面积关系,列方程求解.