已知双曲线过点(3,-2)且与椭圆4x^2+9y^2=36有相同的焦点.(1)求双曲线的标准方程;(2)若点M在双曲线上,F1F2为左右焦点,且MF1+MF2=6根号3,试判别△MF1F2的形状.

问题描述:

已知双曲线过点(3,-2)且与椭圆4x^2+9y^2=36有相同的焦点.(1)求双曲线的标准方程;(2)若点M在双曲线上,F1F2为左右焦点,且MF1+MF2=6根号3,试判别△MF1F2的形状.

4x^2+9y^2=36,x^2/9+y^2/4=1,则有,a=3,b=2.c=√a^2-b^2=√5.则椭圆的焦点坐标为F1,(-√5,0),F2(√5,0).设,双曲线的方程为:x^2/a^2-y^2/b^2=1,(a>b>0).点,(3,-2)在双曲线上,有9/a^2-4/b^2=1,而,c^2=a^2+b^2,c=√5.5=a...