从一个半径为2厘米的圆纸片上剪下四分之一的扇形纸片,用它围成一个圆锥,求圆锥底面积的周长和面积各是多少

问题描述:

从一个半径为2厘米的圆纸片上剪下四分之一的扇形纸片,用它围成一个圆锥,求圆锥底面积的周长和面积各是多少

周长就是圆纸片周长的4/1啊。是3.14
3.14=2X3.14XR (C=2X圆周率XR) R=0.5
圆锥底面积为S=圆周率 X R的平方 就是S=3.14X0.5X0.5=0.785

周长就是圆纸片周长的4/1啊。是3.14
周长3.14,那么圆锥的半径为 3.14=2X3.14XR (C=2X圆周率XR) R=0.5
圆锥底面积为S=圆周率 X R的平方 就是S=3.14X0.5X0.5=0.785

半径为2厘米的圆纸片,周长为4π,
剪下四分之一的扇形,弧长为π,
即圆锥底周长为π,
则圆锥半径为1/2
所以,圆锥底面积为π/4

半径为2厘米的圆纸片上剪下四分之一的扇形纸片,
用它围成一个圆锥,求圆锥底面的周长等于扇形纸片弧长,
1/4×2π×2=π≈3.14厘米
圆锥底面周长π≈3.14厘米,半径等于π/2π=1/2厘米
圆锥底面的面积=π×(1/2)²=π/4≈0.79厘米²