abcd为4个有理数,绝对值分别为1、2、3、4; 问:a+b+c+d能不能等于-1,为什么?
问题描述:
abcd为4个有理数,绝对值分别为1、2、3、4; 问:a+b+c+d能不能等于-1,为什么?
答
abcd为4个有理数,绝对值分别为1、2、3、4
设|A|=1.|B|=2,|C|=3,|D|=4
分A,B一组,C,D一组
其中 A+B值为 -3,-1,1,3
C+D值为 -7,-1,1,7
而-3,-1,1,3与-7,-1,1,7的相加,得不到-1
所以a+b+c+d不能等于-1