已知:如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.(1)求证:四边形BECF是菱形;(2)当∠A的大小为多少度时,四边形BECF是正方形?
问题描述:
已知:如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.
(1)求证:四边形BECF是菱形;
(2)当∠A的大小为多少度时,四边形BECF是正方形?
答
(1)∵EF垂直平分BC,∴CF=BF,BE=CE,∠BDE=90°,BD=CD,又∵∠ACB=90°,∴EF∥AC,∴△BDE∽△BCA,∴BE:AB=DB:BC,∵D为BC中点,∴DB:BC=1:2,∴BE:AB=1:2,∴E为AB中点,即BE=AE,∵CF=AE,∴CF=BE,∴...
答案解析:(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC,根据四边相等的四边形是菱形即可判断;
(2)由菱形的性质知,对角线平分一组对角,即当∠ABC=45°时,∠EBF=90°,则菱形为正方形,根据直角三角形中两个角锐角互余得,∠A=45度.
考试点:正方形的判定;线段垂直平分线的性质;菱形的判定.
知识点:此题主要考查了菱形的判定方法以及正方形的判定和中垂线的性质、直角三角形的性质等知识,根据已知得出∠CBA=45°是解题关键.