小明、小敏两人一起做数学作业,小敏把题读到如图(1)所示,CD⊥AB,BE⊥AC时,还没把题读完,就说:“这题一定是求证∠B=∠C,也太容易了.”她的证法是:由CD⊥AB,BE⊥AC,得∠ADC=∠AEB=90°,公共角∠DAC=∠BAE,所以△DAC≌△EAB.由全等三角形的对应角相等得∠B=∠C.小明说:“小敏你错了,你未弄清本题的条件和结论,即使有CD⊥AB,BE⊥AC,公共角∠DAC=∠BAE,你的推理也是错误的.看我画的图(2),显然△DAC与△EAB是不全等的.再说本题不是要证明∠B=∠C,而是要证明BE=CD.”(1)根据小敏所读的题,判断“∠B=∠C”对吗?她的推理对吗?若不对,请做出正确的推理.(2)根据小明说的,要证明BE=CD,必然是小敏丢了题中条件,请你把小敏丢的条件找回来,并根据找出的条件,你做出判断BE=CD的正确推理.(3)要判断三角形全等,从这个问题中你得到了什么启发?

问题描述:

小明、小敏两人一起做数学作业,小敏把题读到如图(1)所示,CD⊥AB,BE⊥AC时,还没把题读完,就说:“这题一定是求证∠B=∠C,也太容易了.”她的证法是:由CD⊥AB,BE⊥AC,得∠ADC=∠AEB=90°,公共角∠DAC=∠BAE,所以△DAC≌△EAB.由全等三角形的对应角相等得∠B=∠C.
小明说:“小敏你错了,你未弄清本题的条件和结论,即使有CD⊥AB,BE⊥AC,公共角∠DAC=∠BAE,你的推理也是错误的.看我画的图(2),显然△DAC与△EAB是不全等的.再说本题不是要证明∠B=∠C,而是要证明BE=CD.”

(1)根据小敏所读的题,判断“∠B=∠C”对吗?她的推理对吗?若不对,请做出正确的推理.
(2)根据小明说的,要证明BE=CD,必然是小敏丢了题中条件,请你把小敏丢的条件找回来,并根据找出的条件,你做出判断BE=CD的正确推理.
(3)要判断三角形全等,从这个问题中你得到了什么启发?

(1)小敏的推理不正确.因为仅凭两个角不能判定两三角形全等.
(2)条件为AB=AC或AE=AD.
证明:∵CD⊥AB,BE⊥AC;
∴∠ADC=∠AEB=90°;
∵公共角∠DAC=∠BAE,AB=AC;
∴△DAC≌△EAB(AAS)
∴BE=CD(全等三角形的对应边相等).
(3)要判断两个三角形全等,不可缺少的元素是边,至少要有一组对应边相等.
答案解析:明显小敏的推理不正确,因为在判定三角形全等的过程中没有边的参与.要判定两个三角形全等,必须有边的参与.
考试点:直角三角形全等的判定.


知识点:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.