已知x,y,z互不相等,且xyz不等于0,x2+yz=z2,y2+zx=x2,求证:z2+xy=y2

问题描述:

已知x,y,z互不相等,且xyz不等于0,x2+yz=z2,y2+zx=x2,求证:z2+xy=y2

试试反推法吧.我有时间再看看吧,挺麻烦的.

y2+zx=x2 => z=(x^2-y^2)/x代入x2+yz=z2=> x^4+xy(x^2-y^2)=(x^2-y^2)^2=> x^4+x^3y-xy^3=x^4+y^4-2x^2y^2=> x^3-xy^2-y^3+2x^2y=0z2^+xy-y^2=x^2+yz+xy-y^2=x^2+y(x^2-y^2)/x+xy-y^2=x^2-y^3/x+2xy-y^2=(...