dy/dx=x(1+y^2)/y通解
问题描述:
dy/dx=x(1+y^2)/y通解
答
求dy/dx=x(1+y²)/y的通解
分离变量 ydy/(1+y²)=xdx
积分之 ∫ydy/(1+y²)= ∫xdx;即有(1/2) ∫d(1+y²)/(1+y²)=(1/2)ln(1+y²)=x²/2+(1/2)lnC
即有ln(1+y²)=x²+lnC;1+y²=e^(x²+lnC)=Ce^(x²);
故通解为y²=Ce^(x²)-1
答
ydy/(1+y^2)=xdx
d(y^2)/(1+y^2)=2xdx
积分:ln(1+y^2)=x^2+C1
1+y^2=Ce^(x^2)