解方程:x(x-1)/1+x(x+1)/1…+(x+9)(x+10)/1=11?12解方程:x(x-1)/1+x(x+1)/1…+(x+9)(x+10)/1=11/12
问题描述:
解方程:x(x-1)/1+x(x+1)/1…+(x+9)(x+10)/1=11?12
解方程:x(x-1)/1+x(x+1)/1…+(x+9)(x+10)/1=11/12
答
zero
答
=1/(x-1)-1/x+1/x-1/(x+1)...=1/(x-1)-1/(x+10)=11/12
解1/(x-1)-1/(x+10)=11/12 就行了
答
变形为
1/x-1/(x+1)+1/(x+1)-……+1/(x+9)-1/(x+10)=11/12
1/x-1/(x+10)=11/12
x1=-5-1/11*4345^(1/2)
x2=-5+1/11*4345^(1/2)