有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出多少只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的.

问题描述:

有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出多少只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的.

3×3+1,
=9+1,
=10(只);
答:至少要拿出10只才能使拿出的手套中一定有两双是同颜色的.
答案解析:“一定有两双是同颜色的.”即是四只手套同颜色的;把黑色、白色、蓝色看做三个抽屉,把15只手套看作15个元素;考虑最差取法:每个抽屉都取(4-1)3只同颜色的放到里面,如果再取一只,无论放到哪一个抽屉里,都能够保证有4只,即一定有两双是同颜色的.
考试点:抽屉原理.
知识点:本题在准确建立三个抽屉的基础上,求出最差取法的总只数是解答的关键,同时要注意“两双”而不是两只,否则整个题就会全错.