已知,5X^2+4X-2XY+Y^2+1=0,求(X+Y)^2的算术平方根
问题描述:
已知,5X^2+4X-2XY+Y^2+1=0,求(X+Y)^2的算术平方根
答
5X^2+4X-2XY+Y^2+1=0
4X^2+4X+1+X^2-2XY+Y^2=0
(2X+1)^2+(x-Y)^2=0
(2X+1)^2=0,(x-Y)^2=0
x=y=-1/2,
(X+Y)^2
=(-1/2-1/2)^2的算术平方根为:1/2
答
,5X²+4X-2XY+Y²+1=0,
4x²+4x+1 + x²-2xy+y²=0
(2x+1)² + (x-y)² =0
2x+1=0; x-y=0
x=-1/2,y=-1/2
∴(X+Y)²=(-1/2-1/2)²=(-1)²=1
1算术平方根是1