等差数列an中,d≠0,bn是各项为正的等比数列,a1=b1,a3=b3,a7=b5,a15=bm,求m
问题描述:
等差数列an中,d≠0,bn是各项为正的等比数列,a1=b1,a3=b3,a7=b5,a15=bm,求m
答
设等差数列公差为d,等比数列公比为q
a3-a1=2d=b3-b1=b1(q^2-1)
a7-a1=6d=b5-b1=b1(q^4-1)
所以q^4-1=3(q^2-1)
q^2=2或1
d≠0,所以q^2=2
2d=b1
bm-b1=[q^(m-1)-1]b1=a15-a1=14d=7b1
m=7
答
设等差数列an公差为d,等比数列bn公比为q
a1=b1
a3=b3 => a1+2d=b3=a1*q^2
a7=b5 => a1+6d=b5=a1*q^4
b3²=b1*b5 => (a1+2d)²=a1*(a1+6d) =>a1=2d
所以b3=a3=4d,b5=a7=8d
因为bn是各项为正的等比数列,所以q=√(b5/b3)=√2
bn=b1*q^(n-1)=2d*√2^(n-1)=2d*2^[(n-1)/2]
a15=a1+14d=16d=2d*8=2d*2^3
bm=2d*2^[(m-1)/2]
由a15=bm得(m-1)/2=3
m=7