化简函数f(x)=[(1+cos2x)²-2cos2x-1]/[sin(π/4+x)*sin(π/4-x)]

问题描述:

化简函数f(x)=[(1+cos2x)²-2cos2x-1]/[sin(π/4+x)*sin(π/4-x)]

(1+cos2x)²-2cos2x-1
=1+2cos(2x)+cos²(2x)-2cos(2x)-1
=cos²(2x)
sin(π/4+x)=sin(π/4)cos(x)+cos(π/4)sin(x)=[cos(x)+sin(x)]/√2
sin(π/4-x)=sin(π/4)cos(x)-cos(π/4)sin(x)=[cos(x)-sin(x)]/√2
sin(π/4+x)*sin(π/4-x)=1/2*[cos²(x)-sin²(x)]=1/2cos2x
所以原式=1/2[cos2x]^3

(1+cos2x)²-2cos2x-1=1+2cos(2x)+cos²(2x)-2cos(2x)-1=cos²(2x)=[cos²(x)-sin²(x)]²=[cos(x)-sin(x)]² * [cos(x)+sin(x)]² sin(π/4+x)=sin(π/4)cos(x)+cos(π/4)sin(x)=[...