某校从6名教师中选派3名教师同时去3个边远地区支教,每地1人,其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有______种.

问题描述:

某校从6名教师中选派3名教师同时去3个边远地区支教,每地1人,其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有______种.

分两步,
第一步,先选三名老师,又分两类
第一类,甲去,则丙一定去,乙一定不去,有C31=3种不同选法
第二类,甲不去,则丙一定不去,乙可能去也可能不去,有C43=4种不同选法
∴不同的选法有3+4=7种
第二步,三名老师去3个边远地区支教,有A33=6,
根据分步计数原理得不同的选派方案共有,7×6=42.
故答案为;42.
答案解析:先从6名教师中选出3名,因为甲和乙不同去,甲和丙只能同去或同不去,所以可按选甲和不选甲分成两类,两类方法数相加,再把3名老师分配去3个边远地区支教,3名教师进行全排列即可.
考试点:计数原理的应用.
知识点:本题考查了排列组合的综合应用,做题时候要分清用排列还是用组合去做.