lim(1+1/n+1)^n.趋向无穷大
问题描述:
lim(1+1/n+1)^n.趋向无穷大
答
lim(1+1/n+1)^n
=lim[(n+2)/(n+1)]
=e
答
lim(n->∞)(1+ 1/n+1)^[(n+1) *n/(n+1)]
=lim(n->∞) [(1+ 1/n+1)^(n+1)] ^ [n/(n+1)]
很显然由主要极限的公式可以知道,
lim(n->∞)(1+ 1/n+1)^(n+1) =e,
而lim(n->∞) n/(n+1)=1,
所以
原极限
=e ^1
=e