lim(x/1+x)的x次方,x趋向于无穷,

问题描述:

lim(x/1+x)的x次方,x趋向于无穷,

=8.4*57+8.4*42+8.4
=8.4*(57+42+1)
=8.4*100
=840
x²+1=6x
两边平方
x^4+2x²+1=36x²
两边减去x²
x^4+x²+1=35x²
所以x²//(x^4+x²+1)=1/35

x/(1+x)=(x+1-1)/(x+1)
=1-1/(x+1)
令1/a=-1/(1+x)
则a趋于无穷
x=-a-1
所以原式=lim(1+1/x)^(-a-1)
=lim[*1+1/x)^a]^(-1)*1/(1+1/a)
=e^-1*1
=1/e