关于阶乘 证明:+2*2!+3*3!+……+n*n!=(n+1)!-1

问题描述:

关于阶乘 证明:+2*2!+3*3!+……+n*n!=(n+1)!-1

证明:左边=1!+2*2!+3*3!+……+n*n!=1!+(2!+2*2!)+3*3!+……+n*n!-2!=1!+3*2!+3*3!+……+n*n!-2!=1!+(3!+3*3!)+……+n*n!-2!=1!+4*3!+4*4!+……+n*n!-2!=1!+(4!+4*4!)+……+n*n!-2!=1!+5*4!+……+n*n!-2!=......=1!+(n+1)!-2!=(n+1)!-1=右边
证毕

1!+2*2!+3*3!+……+n*n!=(1+1)1!+(2+1)2!+...+(n+1)n!-1!-2!-...-n!=(n+1)!-1