设a、b、c为不全相等的正数,且abc=1.求证:ab+bc+ca>√a+√b+√c.
问题描述:
设a、b、c为不全相等的正数,且abc=1.求证:ab+bc+ca>√a+√b+√c.
答
证明 :由题意知 右边=bc+ac+ab =(bc+ac)/2+(bc+ab)/2+(ac+ab)/2>=√c√abc+√b√abc+√c√abc
=√a+√b+√c 当且仅当a=b=c时 等号成立 又abc不全相等 所以 不能取等号
即 :√a+√b+√c
答
a、b、c为不全相等的正数,且abc=1
ab+bc>2√ab^2c =2√b (1)
bc+ca>2√abc^2=2√c (2)
ab+ca>2√a^2bc=2√a (3)
(1)+(2)+(3)得2ab+2bc+2ca>2√a+2√b+2√c
ab+bc+ca>√a+√b+√c。
答
∵a、b、c是有序的正数,∴1/√a、1/√b、1/√c也是有序的正数,由排序不等式:顺序和不小于乱序和,有:(1/√a)(1/√a)+(1/√b)(1/√b)+(1/√c)(1/√c)≧(1/√a)(1/√b)+(1/√b)(1/√c)+(1/...