cos2x/sin(x+45°)=1/2 那么sin2x等于多少

问题描述:

cos2x/sin(x+45°)=1/2 那么sin2x等于多少

因为cos2x=sin(2x+90°)
所以cos2x/sin(x+45°)=1/2可以化为:
sin(2x+90°) /sin(x+45°)=1/2,
2 sin(x+45°) cos(x+45°) /sin(x+45°)=1/2,
∴cos(x+45°)=1/4.
sin2x=-cos(2x+90°)
=-cos[2(x+45°)]
=-[2 cos²(x+45°)-1]
=7/8.

cos2x/sin(x+45°) =1/2 [cos^2x-sin^2x] /(sinxcos45°+cosxsin45°) = 1/2[(cosx+xinx)(cosx-sinx)] / [√2/2(cosx+sinx)] = 1/2cosx-sinx = √2/4(cosx-sinx)^2 = 1/4cos^2x-2cossinx+sin^2x = 1/41-sin2x = 1/4s...