f(x)=sin^4x-cos^4x的周期为

问题描述:

f(x)=sin^4x-cos^4x的周期为

f(x)=(sin²x+cos²x)(sin²x-cos²x)=1·(-cos2x)=-cos2x
所以周期T=2π/2=π

f(x)=sin^4x-cos^4x
=(sin²x-cos²x)(sin²x+cos²x)
=sin²x-cos²x
=-cos2x
∴ f(x)=sin^4x-cos^4x的周期为2π/2=π.