(arctanx)^ln(1-x)的极限,x趋向0
问题描述:
(arctanx)^ln(1-x)的极限,x趋向0
答
x→0
lim (arctanx)^ln(1-x)
=lim e^ ln (arctanx)^ln(1-x)
=e^lim ln (arctanx)^ln(1-x)
考虑
lim ln (arctanx)^ln(1-x)
=lim ln(1-x) * ln(arctanx)
根据等价无穷小:ln(1+x)~x
=lim -x*ln(arctanx)
=-lim ln(arctanx) / 1/x
该极限为∞/∞型,根据L'Hospital法则
=-lim [ln(arctanx)]' / [1/x]'
=-lim 1/(arctanx)(1+x^2) / -1/x^2
=lim x^2 / (arctanx)(1+x^2)
根据等价无穷小:arctanx~x
=lim x / (1+x^2)
=0
故,原极限=e^0=1
有不懂欢迎追问