已知抛物线y^2=2px(p>0)的焦点弦AB的两端点为A(x1,y1),B(x2,y2) 求证已知抛物线y^2=2px(p>0)的焦点弦AB的两端点为A(x1,y1),B(x2,y2)求证:(1)y1y2=-2p^2 x1x2=p^2/4 (2)|ab|=x1+x2+p=2p/sin^2θ(θ为的直线ab倾斜角)(3)以ab为直径的圆与抛物线的准线相切(4)a,b在准线上的射影为c,d则∠cfd=90°
问题描述:
已知抛物线y^2=2px(p>0)的焦点弦AB的两端点为A(x1,y1),B(x2,y2) 求证
已知抛物线y^2=2px(p>0)的焦点弦AB的两端点为A(x1,y1),B(x2,y2)
求证:(1)y1y2=-2p^2 x1x2=p^2/4 (2)|ab|=x1+x2+p=2p/sin^2θ(θ为的直线ab倾斜角)
(3)以ab为直径的圆与抛物线的准线相切
(4)a,b在准线上的射影为c,d则∠cfd=90°
答
弦AB斜率k=(y1-y2)/(x1-x2)=(y1-y2)/[(y1^2/2p)-(y2^2/2p)]=2p/(y1+y2) (1)而A、F、B三点共线,故k=(y1-0)/(x1-p/2) (2)由(1)、(2)得y1/(x1-p/2)=2p/(y1+y2)--->y1y2+y1^2=2px1-p^2而y1^2=2px1故y1y2=-p^2 又x1x2=(y1...