根号下x^4+x^2y^2化简=(x大于等于0)
问题描述:
根号下x^4+x^2y^2化简=(x大于等于0)
答
设x=(tanα)^2+1
则
√[x+2√(x-1)]+√[x-2√(x-1)]
=√[(tanα)^2+1+2tanα]+√[(tanα)^2+1+2tanα]
=|tanα+1|+|tanα-1|
又1≤x≤2
则√[x+2√(x-1)]+√[x-2√(x-1)]=2
当2≤x
√[x+2√(x-1)]+√[x-2√(x-1)]=2√(x-1)
答
√(x^4+x^2y^2)
=√[x^2(x^2+y^2)]
=x√(x^2+y^2)