已知x,y,z>0,求证:已知x,y,z>0,求证:(x+y+z)(1/(x+y)+1/(y+z)+1/(z+x))≥9/2 ,用均值不等式解答!
问题描述:
已知x,y,z>0,求证:
已知x,y,z>0,求证:(x+y+z)(1/(x+y)+1/(y+z)+1/(z+x))≥9/2 ,用均值不等式解答!
答
用柯西,将左边括号中的xyz乘以2,配成x+y,y+z,z+x然后柯西
希望采纳
答
由题.(x+y+z) (1/(x+y)+1/(y+z)+1/(z+x))= 1+ z/x+y +1 + x/y+z +1 + y/z+x
= 3+ 3 (开3次方)√ xyz /(x+y)(y+z)(x+z)
≥3 + 3 (开3次方)√ xyz /8xyz
= 3+ 3x1/2 =9/2
当且仅当 x=y=z 时成立