棱柱.棱锥.棱台.圆柱.圆锥.圆台.球体的定义和几何特征如题...
棱柱.棱锥.棱台.圆柱.圆锥.圆台.球体的定义和几何特征
如题...
棱柱
棱柱是多面体中最简单的一种,我们常见的一些物体,例如三棱镜、方砖以及螺杆的头部,它们都呈棱柱的形状。 棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。棱柱用表示底面各顶点的字母来表示。 棱柱的底面:棱柱中两个互相平行的面,叫做棱柱的底面。 棱柱的侧面:棱柱中除两个底面以外的其余各个面都叫做棱柱的侧面。 棱柱的侧棱:棱柱中两个侧面的公共边叫做棱柱的侧棱
棱锥的底面: 棱锥中的多边形叫做棱锥的底面。如下图中的面ABCD就是棱锥的底面。 棱锥的侧面: 棱锥中除底面以外的各个面都叫做棱锥的侧面。如图中的面PAB、面PCD等都是棱锥的侧面。 棱锥的侧棱: 相邻侧面的公共边叫做棱锥的侧棱。如图中PA、PB等都是棱锥的侧棱。 棱锥的顶点; 棱锥中各个侧面的公共顶点叫做棱锥的顶点。如图中P是各个侧面的公共顶点,P是棱锥的顶点。 棱锥的高: 棱锥的顶点到底面的距离叫做棱锥的高。如图中,若PO⊥底面ABCD,垂足是O,那么PO就是棱锥的高。 棱锥的对角面; 棱锥中过不相邻的两条侧棱的截面叫做对角面。 棱锥的侧面积及全面积 棱锥的侧面展开图是由各个侧面组成的,展开图的面积,就是棱锥的侧面积,则 S棱锥侧=S1+S2+…+Sn(其中Si,i=1,2…n为第i个侧面的面积) S全=S棱锥侧+S底 棱锥的体积 棱锥和圆锥统称锥体,锥体的体积公式是: v=1/3sh(s为锥体的底面积,h为锥体的高)。 斜棱锥的侧面积=各侧的面积之和 正棱锥的侧面积:S正棱锥侧=1/2chˊ(c为底面周长,hˊ为斜高)。 棱锥的中截面面积:S中截面=1/4S底面 棱锥的底面和平行于底面的一个截面间的部分,叫做棱台。由三棱锥,四棱锥,五棱锥,……截得的棱台,分别叫做三棱台,四棱台,五棱台,…… 由正棱锥截得的棱台叫做正棱台。
棱台的体积公式:V台体=1/3(S+S'+√SS')h. S:上底面积 S':下底面积 h:高
1、 以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder),即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。 2、 在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。如果母线是和轴平行的一条直线,那么所生成的旋转面叫做圆柱面。如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆圆柱体表面的面积,叫做这个圆柱的表面积. 圆柱的表面积=2×底面积+侧面积 圆柱的侧面沿高展开以后是一个正方形或长方形,侧面展开以后的长是底面周长,宽是高,所以侧面积=底面周长×高。 圆柱有两个面是一个大小相同的圆,圆锥只有底面是一个圆。两个底面之间的距离叫做圆柱的高。圆柱有无数条高,且高的长度都相等。圆锥只有一条高。圆柱和圆锥有一 圆柱所占空间的大小,叫做这个圆柱体的体积. 求圆柱的体积跟求长方体、正方体一样,都是底面积×高:设一个圆柱底面半径为r,高为h,则体积V:V=πr^2h 如S为底面积,高为h,体积为V:V=Sh
编辑本段圆柱的侧面积
圆柱的侧面积=底面的周长*高 S侧=Ch (注:c为πd)面是曲面。
用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台,圆台同圆柱和圆锥一样也有轴、底面、侧面和母线,圆台 台 轴的字母 圆台的侧棱延长后交于一点。
圆台的体积公式:V=[S+S′+√(SS′)]h÷3=πh(R^2+Rr+r^2)/3 圆台的表面积公式:S=πr^2+πR^2+πrl+πRl=π(r^2+R^2+rl+Rl) r-上底半径 R-下底半径 h-高 l—母线
定义:空间中到定点的距离小于或等于定长的所有点组成的图形叫做球,如图右图所示的图形为球体。 球体是一个连续曲面的立体图形,由球面围成的几何体称为球体。
半径是R的球的体积 计算公式是:V=(4/3)πR^3(三分之四乘以π乘以半径的三次方) V=(1/6)πd^3 (六分之一乘以π乘以直径的三次方) 半径是R的球的表面积 计算公式是:S=4πR^2(4倍的π乘以R的二次方) 图1
证明: 证:V球=4/3*pi*r^3 欲证V球=4/3pi*r^3,可证V半球=2/3pi*r^3 做一个半球h=r, 做一个圆柱h=r ∵V柱-V锥 = pi*r^3- pi*r^3/3 =2/3pi*r^3 ∴若猜想成立,则V柱-V锥=V半球 ∵根据卡瓦列利原理,夹在两个平行平面之间的两个立体图形,被平行于这两个平面的任意平面所截,如果所得的两个截面面积相等,那么,这两个立体图形的体积相等。 ∴若猜想成立,两个平面:S1(圆)=S2(环) 1.从半球高h点截一个平面 根据公式可知此面积为pi*(r^2-h^2)^0.5^2=pi*(r^2-h^2) 2.从圆柱做一个与其等底等高的圆锥:V锥 根据公式可知其右侧环形的面积为pi*r^2-pi*r*h/r=pi*(r^2-h^2) ∵pi*(r^2-h^2)=pi*(r^2-h^2) ∴V柱-V锥=V半球 ∵V柱-V锥=pi*r^3-pi*r^3/3=2/3pi*r^3 ∴V半球=2/3pi*r^3 由V半球可推出V球=2*V半球=4/3*pi*r^3
立体几何
数学上,立体几何(solid geometry)是3维欧氏空间的几何的传统名称— 因为实践上这大致上就是我们生活的空间.一般作为平面几何的后续课程.立体测绘(Stereometry)处理不同形体的体积的测量问题:圆柱,圆锥,圆台,球,棱柱,棱锥等等.
毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少.
尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的.
[编辑本段]立体几何基本课题
包括:
- 面和线的重合
- 两面角和立体角
- 方块,长方体,平行六面体
- 四面体和其他棱锥
- 棱柱
- 八面体,十二面体,二十面体
- 圆锥,圆柱
- 球
- 其他二次曲面:回转椭球,椭球,抛物面 ,双曲面
公理
立体几何中有4个公理
公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
公理2 过不在一条直线上的三点,有且只有一个平面.
公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理4 平行于同一条直线的两条直线平行.
立方图形
立体几何公式
名称 符号 面积S 体积V
正方体 a——边长 S=6a^2 V=a^3
长方体 a——长 S=2(ab+ac+bc) V=abc
b——宽
c——高
棱柱 S——底面积 V=Sh
h——高
棱锥 S——底面积 V=Sh/3
h——高
棱台 S1和S2——上、下底面积 V=h[S1+S2+√(S1^2)/2]/3
h——高
拟柱体 S1——上底面积 V=h(S1+S2+4S0)/6
S2——下底面积
S0——中截面积
h——高
圆柱 r——底半径 C=2πr V=S底h=Πrh
h——高
C——底面周长
S底——底面积 S底=πR^2
S侧——侧面积 S侧=Ch
S表——表面积 S表=Ch+2S底
S底=πr^2
空心圆柱 R——外圆半径
r——内圆半径
h——高 V=πh(R^2-r^2)
直圆锥 r——底半径
h——高 V=πr^2h/3
圆台 r——上底半径
R——下底半径
h——高 V=πh(R^2+Rr+r^2)/3
球 r——半径
d——直径 V=4/3πr^3=πd^2/6
球缺 h——球缺高
r——球半径
a——球缺底半径 a^2=h(2r-h) V=πh(3a^2+h^2)/6 =πh2(3r-h)/3
球台 r1和r2——球台上、下底半径
h——高 V=πh[3(r12+r22)+h2]/6
圆环体 R——环体半径
D——环体直径
r——环体截面半径
d——环体截面直径 V=2π^2Rr^2 =π^2Dd^2/4
桶状体 D——桶腹直径
d——桶底直径
h——桶高 V=πh(2D^2+d2^)/12 (母线是圆弧形,圆心是桶的中心)
V=πh(2D^2+Dd+3d^2/4)/15 (母线是抛物线形)
注:初学者会认为立体几何很难,但只要打好基础,立体几何将会变得很容易.学好立体几何最关键的就是建立起立体模型,把立体转换为平面,运用平面知识来解决问题,立体几何在高考中肯定会出现一道大题,所以学好立体是非常关键的.