设函数y=f(x)是定义在R上的减函数,并且满足f(xy)=f(x)+f(y),f(3分之1)=1,求f(1)?
问题描述:
设函数y=f(x)是定义在R上的减函数,并且满足f(xy)=f(x)+f(y),f(3分之1)=1,求f(1)?
如果f(x)+f(2-x)
答
由题得:f(1/3)=f(1/3*1)=f(1/3)+f(1)
所以 f(1)=0
因为f(9分之1)=f( 1/3*1/3)=f(1/3)+f(1/3)=2
原不等式可化为f(2x-x^2)1/9
解此不等式得 x>1+2/3√2 或 x