定义一种正整数n的“F”运算 (17日 12:37:3)
问题描述:
定义一种正整数n的“F”运算 (17日 12:37:3)
定义一种正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为n/2k(其中k是使n/2k为奇数的正整数),并且运算重复进行,例如,取n=26,则
26 第一次 13 第二次 44 第三次 11……
若n=449,则第449次“F运算”的结果是______
答
定义一种对正整数N的“F”运算:1 ,当N为奇数时,结果为3N+5 2,当N为偶数时,结果为2的K次方分之N(其中K为使2的K次方分之N为奇数的正整数),并运算重复进行,例如,取N=26,则26(F2,第一次)13(F1,第二次)44(F2,第三次)11...若N=449,则第449次运算结果是( 8)
n=449
第一次运算,得1352
第二次运算,得169 (k=3)
第三次运算,得512
第四次运算,得1 (k=9)
第五次运算,得8
第六次运算,得1 (k=3)
可以看出,从第四次开始,结果就只是1,8两个数轮流出现
且当次数为偶数时,结果是1,次数是奇数时,结果是8
而449次是奇数
因此最后结果是8