抛物线y=ax^2-5ax+4a与x轴相交于A,B,且过点C(5,4)

问题描述:

抛物线y=ax^2-5ax+4a与x轴相交于A,B,且过点C(5,4)
1.求a的值和该抛物线定点p的坐标

过点C(5,4)
4=25a-25a+4a
a=1
y=x^2-5x+4
=(x-5/2)^2-1/4
p(5/2,-1/4)