一元二次方程整数解讨论?

问题描述:

一元二次方程整数解讨论?
对于此问题,很多人说只要根与系数定理(韦达定理),两根之和等于整数,两根之积等于整数就行了.
但是下面这道题如何解释
mx^2-4x+4=0(m不等于0)的两个不相等的根为整数的充要条件?
首先解出判别式:m<1
然后韦达定理解出:4/m为整数
但是m=-1时,该方程没有整数解
求求大家想想这是为什么?然后帮小弟解出充要条件

当m=-1时,两个根为一个整数±根号的形式,其和为整数(根号抵消了).
整数解的条件要再加上判别式为完全平方数
即△=16-16m>0且为完全平方数