A为nxn的可对角化矩阵,证明:若B为任何和A相似的矩阵,则B可对角化

问题描述:

A为nxn的可对角化矩阵,证明:若B为任何和A相似的矩阵,则B可对角化

证明:设C是任意 对角矩阵 ,且与A相似
若B与A相似,根据相似具有传递性,即 C
则B与C相似,
所以B可对角化就是因为A是对角阵,所有与A相似的矩阵均可对角化, A可相似对角化,则存在可逆矩阵P,使得P^-1*A*P=^=[λi]B与A相似 B~A则存在可逆矩阵Q使得Q^-1*B*Q=A所以 P^-1*A*P = P^-1*(Q^-1*B*Q)P =(QP)^-1 B(QP)= [λi] 因为 (QP)^-1 B(QP) = [λi] 且(QP)为可逆矩阵 所以B可对角化