先化简,再求值:a^2+a-b^+b分之a^2-a-b^2-b,其中a=4分之3,b=4分之1

问题描述:

先化简,再求值:a^2+a-b^+b分之a^2-a-b^2-b,其中a=4分之3,b=4分之1

a^2-a-b^2-b/a^2+a-b^2+b=(a^2-b2-a-b)/(a^2-b^2+a+b)=[(a+b)(a-b)-(a+b)]/[(a+b)(a-b)+(a+b)]=[(a+b)(a-b-1)]/[(a+b)(a-b+1)]=(a-b-1)/(a-b+1)∵a=3/4 b=1/4∴(a-b-1)/(a-b+1)= (2/4-1)/(2/4+1)=(-1/2)/(2/3...