圆x2+y2+2kx+k2-1=0与圆x2+y2+2(k+1)y+k2+2k=0的圆心之间的最短距离是( ) A.22 B.22 C.1 D.2
问题描述:
圆x2+y2+2kx+k2-1=0与圆x2+y2+2(k+1)y+k2+2k=0的圆心之间的最短距离是( )
A.
2
2
B. 2
2
C. 1
D.
2
答
圆x2+y2+2kx+k2-1=0的圆心(-k,0),圆x2+y2+2(k+1)y+k2+2k=0的圆心(0,-k-1).
圆心之间的距离为:
=
(−k)2+(k+1)2
=
2k2+2k+1
,
2(k+
)2+1 2
1 2
当k=−
时圆心距最小,最小值为:1 2
.
2
2
故选:A.