圆x2+y2+2kx+k2-1=0与圆x2+y2+2(k+1)y+k2+2k=0的圆心之间的最短距离是(  )A. 22B. 22C. 1D. 2

问题描述:

圆x2+y2+2kx+k2-1=0与圆x2+y2+2(k+1)y+k2+2k=0的圆心之间的最短距离是(  )
A.

2
2

B. 2
2

C. 1
D.
2

圆x2+y2+2kx+k2-1=0的圆心(-k,0),圆x2+y2+2(k+1)y+k2+2k=0的圆心(0,-k-1).
圆心之间的距离为:

(−k)2+(k+1)2
=
2k2+2k+1
=
2(k+
1
2
)
2
+
1
2

当k=
1
2
时圆心距最小,最小值为:
2
2

故选:A.
答案解析:求出两个圆的圆心距,利用二次函数的最值,即可得到结果.
考试点:圆与圆的位置关系及其判定.
知识点:本题考查圆与圆的位置关系,两点间距离公式的应用,二次函数的最值的求法,考查计算能力.