已知P:方程x^2+mx+1=0有有两个不等的负实根,q:方程4x^2+4(m-2)x+1=0无实根.若p或q为真,p且q为假,求实数m的取值范围.方程x²+mx+1=0有来那个不等负根,则:△>0且x1+x20,得:m>2
问题描述:
已知P:方程x^2+mx+1=0有有两个不等的负实根,q:方程4x^2+4(m-2)x+1=0无实根.若p或q为真,p且q为假,求实数m的取值范围.方程x²+mx+1=0有来那个不等负根,则:△>0且x1+x20,得:m>2
方程4x²+4(m-2)x+1=0无实根,则:△
答
x^2+mx+1=0
x1+x2=-m0
所以可得到m>0-(m+2)<0这是怎么推出来的没有这个-(m+2)