1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+.+1/(x+999)(x+1000)
问题描述:
1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+.+1/(x+999)(x+1000)
答
1/x(x+1)=1/x-1/(x+1)
1/(x+1)(x+2)=1/(x+1)-1/(x+2)
...
1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+.+1/(x+999)(x+1000)
=1/x-1/(x+1)+1/(x+1)-1/(x+2)+...+1/(x+999)-1/(x+1000)
=1/x-1/(x+1000)=1000/x(x+1000)