小玲练习打算盘,她按照自然数的顺序从1开始求和,当加到某数和是1994,但她发现计算是少加了一个数.
问题描述:
小玲练习打算盘,她按照自然数的顺序从1开始求和,当加到某数和是1994,但她发现计算是少加了一个数.
问小玲少加了哪个数?
答
设她已经加到了n,求的正确的和应该为s,则s=1+2+3+4+……+ns=n+……+4+3+2+12s=n(n+1)s=n(n+1)/2这是求从1到n连加的公式.再设她少加了x,则n(n+1)/2=1994+xn^2+n-(3988+2x)=0可以看出,3988+2x可以化成m(m+1)的形式....