f(x)=asinx+bcosx(ab不等于0)的最大值为2,f(π/6)=√3,求f(π/3)
问题描述:
f(x)=asinx+bcosx(ab不等于0)的最大值为2,f(π/6)=√3,求f(π/3)
答
f(x)=asinx+bcosx =根号(a^2+b^2)sin(x+m) =2sin(x+m).√3=2sin(π/6+m) π/6+m=π/3 m=π/6 f(π/3)=2sin(π/3+π/6)=2.