椭圆x23+y22=1的左右焦点分别为F1和F2,直线l1过F2且与x轴垂直,动直线l2与y轴垂直,l2交l1于点P,求线段P F1的垂直平分线与 l2的交点M的轨迹方程,并说明曲线类型.

问题描述:

椭圆

x2
3
+
y2
2
=1的左右焦点分别为F1和F2,直线l1过F2且与x轴垂直,动直线l2与y轴垂直,l2交l1于点P,求线段P F1的垂直平分线与 l2的交点M的轨迹方程,并说明曲线类型.

如图所示,
由题意可知:点M到定直线l1与到定点F1的距离相等,因此其轨迹是抛物线,点F1(-1,0)为焦点,直线l1为准线.
∴点M的轨迹为y2=-4x.