x=acos³x y=asin³t 求d²y/dx²

问题描述:

x=acos³x y=asin³t 求d²y/dx²

d²y/dx²=(y``x`-x``y`)/(x`)^3
y`=3a(sint)^2*cost
y``=6asint*(cost)^2-3a(sint)^3
x`=-3a(cost)^2*sint
x``=6acost*(sint)^2-3a(cost)^3
d²y/dx²=1/(3asint*(cost)^2)
(方法是这样,中间步骤不知道有没有算错)最后一步d²y/dx²=(y``x`-x``y`)/(x`)^3=1/(3asint*(cost)^2)怎么算出来的? 求详解设x=f(t),y=g(t),dy/dx=(dy/dt)*(dt/dx)=g`(t)/f`(t)d2y/dx2=d(dy/dx)/dx=[d(g`(t)/f`(t))/dt]*(dt/dx)=[g``(t)*f`(t)-f``(t)*g`(t)]/[f`(t)]^2*(1/f`(t))=(y``x`-x``y`)/(x`)^3,再把求导的代入就是了y`=dy/dt,x`=dx/dt,y``=d2y/dt2,x``=d2x/dt2