在长方体ABCD-A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是(  ) A.83 B.38 C.43 D.34

问题描述:

在长方体ABCD-A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是(  )
A.

8
3

B.
3
8

C.
4
3

D.
3
4

如图,设A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面AA1O1,故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过B1作B1H⊥AO1于H,则易知A1H的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,A1O1=2,AO1=32...