函数f(x)定义)在R上的偶函数当x≥0时,f(x)=-(7x)/(x2+x) 当x1≥2且x2≥2,证明|f(x1)-f(x2)|
问题描述:
函数f(x)定义)在R上的偶函数当x≥0时,f(x)=-(7x)/(x2+x) 当x1≥2且x2≥2,证明|f(x1)-f(x2)|
答
设x1≥x2≥2
设y=|f(x1)-f(x2)|=7(x1-x2)/[(x1+1)(x2+1)]
当x1=x2=0,|f(x1)-f(x2)|有最小值0
当x1趋于正无穷,x2=2,|f(x1)-f(x2)|趋于7/3
因此0≤y<7/3
若是f(x)=-(6x)/(x2+x) ,0≤y<2,题目没错吗?