求证:若两条直线平行,则一对同旁内角的角平分线互相垂直. (要求画出图形,写出已知条件、求证和证明过程)

问题描述:

求证:若两条直线平行,则一对同旁内角的角平分线互相垂直.
(要求画出图形,写出已知条件、求证和证明过程)

如图,已知AB∥CD,OP,MN分别平分∠BOM,∠OMD,OP,MN交于G点,求证:MN⊥OP.证明:∵AB∥CD,∴∠BOM+∠OMD=180°(两直线平行,同旁内角互补),∵MN、OP分别是平分∠BOM,∠OMD,∴2∠POM+2∠NMO=180°,∴∠P...