用极限存在准则证明:Lim x[1/x]=1 X趋于0+
问题描述:
用极限存在准则证明:Lim x[1/x]=1 X趋于0+
答
[1/x]表示对1/x向下取整,例如[1.7]=1,显然关于向下取整符号[]有不等式a-1≤[a]≤a.利用这不等式,有(1/x)-1≤[1/x]≤1/x,由于x>0,不等式两边同乘x,得1-x≤x[1/x]≤1,当x趋于0+时,左边1-x趋于1,右边常数1自然也趋于1,根据夹逼准则,有limx[1/x]=1.